Интернет магазин китайских планшетных компьютеров



Компьютеры - Сжатие аудиоданных - Сжатие с потерями

22 января 2011


Оглавление:
1. Сжатие аудиоданных
2. Сжатие с потерями
3. Субъективная оценка качества



Сжатие аудиоданных с потерями основывается на несовершенстве человеческого слуха при восприятии звуковой информации. Неспособность человека в определенных случаях различать тихие звуки в присутствии более громких, называемая эффектом маскировки, была использована в алгоритмах сокращения психоакустической избыточности. Эффекты слухового маскирования зависят от спектральных и временных характеристик маскируемого и маскирующего сигналов и могут быть разделены на две основные группы:

  • частотное маскирование
  • временное маскирование

Эффект маскирования в частотной области связан с тем, что в присутствии больших звуковых амплитуд человеческое ухо нечувствительно к малым амплитудам близких частот. То есть, когда два сигнала одновременно находятся в ограниченной частотной области, то более слабый сигнал становится неслышимым на фоне более сильного.

Маскирование во временной области характеризует динамические свойства слуха, показывая изменение во времени относительного порога слышимости, когда маскирующий и маскируемый сигналы звучат не одновременно. При этом следует различать явления послемаскировки и предмаскировки. Более слабый сигнал становится неслышимым за 5 − 20 мс до включения сигнала маскирования и становится слышимым через 50 − 200 мс после его включения.

Наилучшим методом кодирования звука, учитывающим эффект маскирования, оказывается полосное кодирование. Сущность его заключается в следующем. Группа отсчетов входного звукового сигнала, называемая кадром, поступает на блок фильтров который разделяет сигнал на частотные поддиапазоны. На выходе каждого фильтра оказывается та часть входного сигнала, кото­рая попадает в полосу пропускания данного фильтра. Далее, в каждой полосе с помощью психоакустической модели, анализируется спектральный состав сигнала и оценивается, ка­кую часть сигнала следует передавать без сокращений, а какая лежит ниже по­рога маскирования и может быть переквантована на меньшее число бит. Для сокращения максимального динамического диапазона определяется максимальный отсчет в кадре и вычисляется масштабирующий множитель, который приводит этот отсчет к верхнему уровню квантования. Эта операция аналогична компандированию в аналоговом вещании. На этот же множитель умножаются и все остальные отсчеты. Масштабирующий множитель передается к декодеру вместе с кодированными данными для коррекции коэффициента передачи последнего. После масштабирования производится оценка порога маскирования и осуществляется перераспределение общего числа битов между всеми полосами.

Очевидно, что после устранения психоакустической избыточности звуковых сигналов их точное восстановления при декодировании оказывается уже невозможным. Методами устранения психофизической избыточности можно обеспечить сжатие цифровых аудиоданных в 10 − 12 раз без существенных потерь в качестве.

Структура кодера сжатия аудиоданных с потерями

Обобщенная структура кодера звукового сигнала с компрессией цифровых аудиоданных
  • Исходный цифровой звуковой сиг­нал разделяется на частотные поддиапазоны и сегментируется по времени в блоке временной и частотной сегментации.
  • Длина кодируемой выборки зависит от формы временной функции звукового сигнала. При отсутствии резких выбросов по амплитуде используется так назы­ваемая длинная выборка, обеспечивающая высокое разрешение по частоте. В случае же резких изменений амплитуды сигнала длина кодируемой выборки резко уменьшается, что дает более высокое разрешение по времени. Решение об изменении длины кодируемой выборки принимает блок психоакустического анализа, вычисляя значение психоакустической энтропии сигнала.
  • После сег­ментации сигналы частотных поддиапазонов нормируются, квантуются и кодируются. В наиболее эффективных алгоритмах компрессии кодированию подвергаются не сами отсчеты выборки звукового сигнала, а соответствующие им коэффициенты МДКП.
  • Учет закономерностей слухового восприятия звукового сигнала вы­полняется в блоке психоакустического анализа. Здесь по специальной процедуре для каждого частотного поддиапазона рассчитывается максимально допустимый уровень искажений квантования, при котором они еще маскируются полезным сигналом данного поддиапазона.
  • Блок динамического распределения бит в соответствии с требованиями психоакустической модели для каждого поддиапазона кодирования выделяет такое минимально возможное их количество при котором уровень искажений, вызванных квантованием, не превышал порога их слышимости, рассчитанного психоакустической моделью.
  • Также могут использоваться:
    • матрицирование стерео - сложение и вычитание левого и правого канала для устранения повторяющейся информации
    • специальные процедуры итерационных циклов, позволяющие управлять величиной энергии искажений квантования в поддиапазонах при недостаточном числе доступных для кодирования бит
    • процедуры линейного и обратного адаптивного предсказаний
    • техника сглаживания переходных шумов во временной области, позволяющая управлять микроструктурой искажений квантования внутри каждого поддиапазона кодирования

Многие другие приёмы могут послужить способом сократить объём данных звуковой информации. Даже простое сужение полосы частот сигнала вместе с уменьшением динамического диапазона может уже называться сжатием аудиоданных. Например, в стандарте сжатия звука в сотовой связи используется и то и другое. Стремясь удалить избыточность из звука, кодек при плохом качестве сигнала становится избирателен к определённым словам, упорно проглатывая их.



Просмотров: 3383


<<< Префиксный код
Сжатие без потерь >>>