Интернет магазин китайских планшетных компьютеров |
|
Компьютеры - Параметрическое задание поверхности - Кривые поверхности23 января 2011Оглавление: 1. Параметрическое задание поверхности 2. Кривые поверхности 3. Свойства параметрических поверхностей
Упорядоченный набор из 4-х точек в пространстве определяет билинейную интерполяционную поверхность и задаёт отображение на неё квадрата :
Эта поверхность является гладкой, однако невозможность задавать произвольные касательные на её границе делает её практически неприменимой в качестве патчей
На практике применяется в основном два вида поверхностей Безье: бикубическая 3-го порядка - четырёхугольник, определяемый 16-ю точками, и барицентрическая 3-го порядка - треугольник, определяемый 10 точками. Барицентрическая система координат в треугольнике содержит 3 числа, поэтому она не всегда удобна. Граница поверхности Безье состоит из кривых Безье. Точки, определяющие поверхность, определяют также кривые её границы, включая нормали на них. Это позволяет создавать гладкие составные поверхности, то есть использовать поверхности Безье в качестве патчей Рациональная поверхность Безье отличается тем, что каждой точке в её определении назначен некоторый «вес», определяющий степень её влияния на форму поверхности.
На практике обычно применяются бикубические B-сплайновые поверхности. Как и поверхности Безье, они определяются 16-ю точками, однако в общем случае не проходят через эти точки. Однако B-сплайны удобно использовать в качестве патчей, так как они хорошо стыкуются друг с другом при использовании общей сетки вершин, а сами вершины позволяют явным образом задавать нормали и касательные на границах патчей. При необходимости более гибкого управления формой поверхности применяют рациональные B-сплайны, неоднородные B-сплайны, а также комбинированный вариант - неоднородные рациональные B-сплайны. Просмотров: 4494
|