Интернет магазин китайских планшетных компьютеров |
|
Компьютеры - Метод главных компонент - Примеры использования22 января 2011Оглавление: 1. Метод главных компонент 2. Формальная постановка задачи 3. Диагонализация ковариационной матрицы 4. Сингулярное разложение матрицы данных 5. Матрица преобразования к главным компонентам 6. Отбор главных компонент по правилу Кайзера 7. Оценка числа главных компонент по правилу сломанной трости 8. Нормировка 9. Механическая аналогия и метод главных компонент для взвешенных данных 10. Специальная терминология 11. Примеры использования Визуализация данныхВизуализация данных представление в наглядной форме данных эксперимента или результатов теоретического исследования. Первым выбором в визуализации множества данных является ортогональное проецирование на плоскость первых двух главных компонент. Плоскость проектирования является, по сути плоским двумерным «экраном», расположенным таким образом, чтобы обеспечить «картинку» данных с наименьшими искажениями. Такая проекция будет оптимальна в трех отношениях:
Визуализация данных является одним из наиболее широко используемых приложений метода главных компонент и его нелинейных обобщений. Компрессия изображений и видеоДля уменьшения пространственной избыточности пикселей при кодировании изображений и видео используется линейные преобразования блоков пикселей. Последующие квантования полученных коэффициентов и кодирование без потерь позволяют получить значительные коэффициенты сжатия. Использование преобразования PCA в качестве линейного преобразования является для некоторых типов данных оптимальным с точки зрения размера полученных данных при одинаковом искажении . На данный момент этот метод активно не используется, в основном из-за большой вычислительной сложности. Также сжатия данных можно достичь отбрасывая последние коэффициенты преобразования. Подавление шума на изображенияхОсновная суть метода при удалении шума из блока пикселей представить окрестность этого блока в виде набора точек в многомерном пространстве, применить к нему PCA и оставить только первые компоненты преобразования. При этом предполагается, что в первых компонентах содержится основная полезная информация, оставшиеся же компоненты содержат ненужный шум. Применив обратное преобразование после редукции базиса главных компонент, мы получим изображение без шума. Индексация видеоОсновная идея представить при помощи PCA каждый кадр видео несколькими значениями, которые в дальнейшем будут использоваться при построении базы данных и запросам к ней. Столь существенная редукция данных позволяет значительно увеличить скорость работы и устойчивость к ряду искажений в видео. БиоинформатикаМетод главных компонент интенсивно используется в биоинформатике для сокращения размерности описания, выделения значимой информации, визуализации данных и др. Один из распространённых вариантов использования анализ соответствий . На иллюстрациях генетический текст) представлен как множество точек в 64-мерном пространстве частот триплетов. Каждая точка соответствует фрагменту ДНК в скользящем окне длиной 300 нуклеотидов. Этот фрагмент разбивается на неперекрывающиеся триплеты, начиная с первой позиции. Относительные частоты этих триплетов в фрагменте и составляют 64-мерный вектор. На Рис. А представлена проекция на первые 2 главные компоненты для генома бактерии Streptomyces coelicolor. На Рис. Б представлена проекция на первые 3 главные компоненты. Оттенками красного и коричневого выделены фрагменты кодирующих последовательностей в прямой цепи ДНК, а оттенками зеленого выделены фрагменты кодирующих последовательностей в обратной цепи ДНК. Черным помечены фрагменты, принадлежащие некодирующей части. Анализ методом главных компонент большинства известных бактериальных геномов представлен на специализированном сайте. ХемометрикаМетод главных компонент один из основных методов в хемометрике. Позволяет разделить матрицу исходных данных X на две части: «содержательную» и «шум». По наиболее популярному определению «Хемометрика это химическая дисциплина, применяющая математические, статистические и другие методы, основанные на формальной логике, для построения или отбора оптимальных методов измерения и планов эксперимента, а также для извлечения наиболее важной информации при анализе экспериментальных данных». ПсиходиагностикаПсиходиагностика является одной из наиболее разработанных областей приложения метода главных компонент . Стратегия использования основывается на гипотезе об автоинформативности экспериментальных данных, которая подразумевает, что диагностическую модель можно создать путем аппроксимации геометрической структуры множества объектов в пространстве исходных признаков. Хорошую линейную диагностическую модель удается построить, когда значительная часть исходных признаков внутренне согласованна. Если эта внутренняя согласованность отражает искомый психологический конструкт, то параметры линейной диагностической модели дает метод главных компонент. Общественные наукиМетод главных компонент один из основных инструментов эконометрики. Он применяется для:
Метод обеспечивает максимальную информативность и минимальное искажение геометрической структуры исходных данных. В социологии метод необходим для решения первых двух основных задач:
В политологии метод главных компонент был основным инструментом проекта «Политический Атлас Современности» для линейного и нелинейного анализа рейтингов 192 стран мира по пяти специально разработанным интегральным индексам. Для картографии результатов этого анализа разработана специальная ГИС, объединяющая географическое пространство с пространством признаков. Также созданы карты данных политического атласа, использующие в качестве подложки двумерные главные многообразия в пятимерном пространстве стран. Отличие карты данных от географической карты заключается в том, что на географической карте рядом оказываются объекты, которые имеют сходные географические координаты, в то время как на карте данных рядом оказываются объекты с похожими признаками. Сокращение размерности динамических моделейПроклятие размерности затрудняет моделирование сложных систем. Сокращение размерности модели необходимое условие успеха моделирования. Для достижения этой цели создана разветвленная математическая технология. Метод главных компонент также используется в этих задачах). Например, при описании динамики турбулентности динамические переменные поле скоростей принадлежат бесконечномерному пространству. Можно набрать большую коллекцию мгновенных значений полей и применить к этому множеству многомерных «векторов данных» метод главных компонент. Эти главные компоненты называются также эмпирические собственные векторы. В некоторых случаях метод дает впечатляющее сокращение размерности Другие области применения этой техники сокращения динамических моделей чрезвычайно разнообразны от теоретических основ химической технологии до океанологии и климатологии. Просмотров: 23875
|