Интернет магазин китайских планшетных компьютеров |
|
Компьютеры - Кластерный анализ - Анализ и интерпретация его результатов23 января 2011Оглавление: 1. Кластерный анализ 2. Задачи и условия 3. Анализ и интерпретация его результатов 4. Типология задач кластеризации 5. Формальная постановка задачи кластеризации 6. Применение При анализе результатов социологических исследований рекомендуется осуществлять анализ методами иерархического агломеративного семейства, а именно методом Уорда, при котором внутри кластеров оптимизируется минимальная дисперсия, в итоге создаются кластеры приблизительно равных размеров. Метод Уорда наиболее удачен для анализа социологических данных. В качестве меры различия лучше квадратичное евклидово расстояние, которое способствует увеличению контрастности кластеров. Главным итогом иерархического кластерного анализа является дендрограмма или «сосульчатая диаграмма». При её интерпретации исследователи сталкиваются с проблемой того же рода, что и толкование результатов факторного анализа отсутствием однозначных критериев выделения кластеров. В качестве главных рекомендуется использовать два способа визуальный анализ дендрограммы и сравнение результатов кластеризации, выполненной различными методами. Визуальный анализ дендрограммы предполагает «обрезание» дерева на оптимальном уровне сходства элементов выборки. «Виноградную ветвь» целесообразно «обрезать» на отметке 5 шкалы Rescaled Distance Cluster Combine, таким образом будет достигнут 80 % уровень сходства. Если выделение кластеров по этой метке затруднено, то можно выбрать другую метку. Такая методика предлагается Олдендерфером и Блэшфилдом. Теперь возникает вопрос устойчивости принятого кластерного решения. По сути, проверка устойчивости кластеризации сводится к проверке её достоверности. Здесь существует эмпирическое правило устойчивая типология сохраняется при изменении методов кластеризации. Результаты иерархического кластерного анализа можно проверять итеративным кластерным анализом по методу k-средних. Если сравниваемые классификации групп респондентов имеют долю совпадений более 70 %, то кластерное решение принимается. Проверить адекватность решения, не прибегая к помощи другого вида анализа, нельзя. По крайней мере, в теоретическом плане эта проблема не решена. В классической работе Олдендерфера и Блэшфилда «Кластерный анализ» подробно рассматриваются и в итоге отвергаются дополнительные пять методов проверки устойчивости: 1) кофенетическая корреляция не рекомендуется и ограниченна в использовании; 2) тесты значимости всегда дают значимый результат; 3) методика повторных выборок, что, тем не менее, не доказывает обоснованность решения; 4) тесты значимости для внешних признаков пригодны только для повторных измерений; 5) методы Монте-Карло очень сложны и доступны только опытным математикам. Просмотров: 8242
|