Интернет магазин китайских планшетных компьютеров |
|
Компьютеры - Data mining - Этапы обучения02 мая 2011Оглавление: 1. Data mining 2. Введение 3. Задачи 4. Этапы обучения Выделяется типичный ряд этапов решения задач методами Data Mining:
Подготовка данныхПеред использованием алгоритмов Data Mining необходимо произвести подготовку набора анализируемых данных. Так как ИАД может обнаружить только присутствующие в данных закономерности, исходные данные с одной стороны должны иметь достаточный объем, чтобы эти закономерности в них присутствовали, а с другой быть достаточно компактными, чтобы анализ занял приемлемое время. Чаще всего в качестве исходных данных выступают хранилища или витрины данных. Подготовка необходима для анализа многомерных данных до кластеризации или интеллектуального анализа данных. Далее данные очищаются. Очистка удаляет выборки с шумами и пропущенными данными. Очищенные данные сводятся к векторам признаков, один вектор на выборку. Вектор признаков это суммарная версия сырых данных выборки. Например, черно-белое изображение лица размером 100×100 пикселей содержит 10 тыс. бит сырых данных. Они могут быть преобразованы в вектор признаков путем обнаружения в изображении глаз и рта. В итоге происходит уменьшение объема данных с 10 тыс. бит до списка кодов положения, значительно уменьшая объем анализируемых данных, а значит и время анализа. Выбор функции будет зависеть от того, что является целью анализа; выбор «правильной» функции имеет основополагающее значение для успешного интеллектуального анализа данных. Векторы признаков делятся на две категории обучающий набор и тестовый набор. Обучающий набор используется для «обучения» алгоритма Data Mining, а тестовый набор для проверки найденных закономерностей. Просмотров: 4573
|