Интернет магазин китайских планшетных компьютеров |
|
Компьютеры - Axiom - Примеры01 мая 2011texas tax id Оглавление: 1. Axiom 2. Философия проекта 3. Примеры 4. Документация 3j-символыВычисление 3j-символов и коэффициентов Клебша-Гордана. j3Sum == maxz := reduce minz := max, - )) minz > maxz => 0 maxz < 0 => 0 sum ^ / _ * factorial * factorial * _ factorial * factorial * factorial ), _ z=minz..maxz) j3 == m1 + m2 + m3 ~= 0 => 0 abs > j3 => 0 j1 + j2 < j3 => 0 abs > j1 => 0 abs > j2 => 0 abs > j3 => 0 not integer? => 0 sqrt ( _ factorial * factorial * factorial / _ factorial * _ factorial * factorial * _ factorial * factorial * _ factorial * factorial ) * j3Sum clebschGordan == ^ * sqrt * j3 Общая теория относительности«Аксиома» выводит символы Кристоффеля и тензоры Римана и Риччи в решении Шварцшильда. x := vector ; dim := #x; %nu := operator '%nu; %lambda := operator '%lambda; lg := matrix [ , _ , _ , _ _ ]; ug := inverse lg; grSetup == free x free dim free lg free ug x := names dim := #x lg := metric ug := inverse lg sum == reduce Christoffel == * sum [ ug*, x) + D, x) - D, x)) for m in 1..dim ] Riemann == D, x) - D, x) + sum [ Christoffel*Christoffel - Christoffel*Christoffel for n in 1..dim ] Ricci == sum scalarCurvature == sum [ sum [ ug * Ricci for i in 1..dim ] for k in 1..dim ] lRiemann == 0 lRiemann == 0 lRiemann == - lRiemann lRiemann == - lRiemann lRiemann == sum showChristoffel == for k in 1..dim repeat for l in 1..k repeat for i in 1..dim repeat if Christoffel ~= 0 then k > l => output infix , _ script, _ Christoffel::OUTFORM]) k = l => output infix ('=, _ [script, _ Christoffel::OUTFORM]) showRicci == for i in 1..dim repeat for k in 1..i repeat if Ricci ~= 0 then i = k => output infix , Ricci::OUTFORM]) i > k => output infix , _ subscript, _ Ricci::OUTFORM]) showRiemann == for k in 1..dim repeat for l in 1..dim repeat for m in 1..dim repeat for i in 1..dim repeat if Riemann ~= 0 then output infix ('=, _ ) -> showChristoffel Compiling function sum with type List Expression Integer -> Expression Integer Compiling function Christoffel with type (PositiveInteger, PositiveInteger,PositiveInteger) -> Expression Integer Compiling function showChristoffel with type -> Void %nu , %e %nu 1 %Gamma = --------------- 0,0 %lambda 2%e , %nu 0 0 %Gamma = %Gamma = ------- 1,0 0,1 2 , %lambda 1 %Gamma = ----------- 1,1 2 2 2 1 %Gamma = %Gamma = - 2,1 1,2 r 1 r %Gamma = - ------------ 2,2 %lambda %e 3 3 1 %Gamma = %Gamma = - 3,1 1,3 r 3 3 cos %Gamma = %Gamma = ----------- 3,2 2,3 sin 2 1 r sin %Gamma = - -------------- 3,3 %lambda %e 2 %Gamma = - cossin 3,3 Type: Void -> Ricci Compiling function Riemann with type (PositiveInteger, PositiveInteger,PositiveInteger,PositiveInteger) -> Expression Integer Compiling function Ricci with type -> Expression Integer , , %lambda - r%nu + r%lambda + 2%e - 2 --------------------------------------------- %lambda 2%e Type: Expression Integer Галерея
Просмотров: 4072
|