Интернет магазин китайских планшетных компьютеров



Компьютеры - Задача о принадлежности точки многоугольнику

22 января 2011


Оглавление:
1. Задача о принадлежности точки многоугольнику
2. Метод суммирования углов
3. Алгоритмы c предобработкой



В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.

Многоугольник может быть как выпуклым, так и невыпуклым. Обычно предполагается, что многоугольник простой, т.е. без самопересечений, но задачу рассматривают и для не-простых многоугольников. В последнем случае разные способы определения принадлежности точки многоугольнику могут привести к разным результатам. Различают алгоритмы без предварительной обработки и алгоритмы с предварительной обработкой, в ходе которой создаются некоторые структуры данных, позволяющие в дальнейшем быстрее отвечать на множество запросов о принадлежности точек одному и тому же многоугольнику.

Метод трассировки луча

Учёт числа пересечений

Методы работают по-разному для многоугольников с самопересекающейся границей. Слева: even-odd rule. Справа: nonzero winding rule.

Один из стандартных методов определения принадлежности точки произвольному простому многоугольнику заключается в следующем. Выпустим луч из данной точки в произвольном направлении, и посчитаем сколько раз луч пересекает рёбра многоугольника. Для этого достаточно пройтись в цикле по рёбрам многоугольника и определить, пересекает ли луч каждое ребро. Если число пересечений нечётно, то объявляется, что точка лежит внутри многоугольника, если чётно — то снаружи. Это основано на том простом наблюдении, что при движении по лучу с каждым пересечением границы точка попеременно оказывается то внутри, то снаружи многоугольника. Алгоритм известен под такими названиями, как crossing number algorithm или even-odd rule.

В алгоритме возникает затруднение в вырожденном случае, когда луч пересекает вершину многоугольника. Один из приёмов для его преодоления заключается в том, чтобы считать, что такие вершины многоугольника лежат на бесконечно малую величину выше прямой луча, и стало быть пересечения на самом деле и нет. Таким образом, пересечение луча с ребром засчитывается, если один из концов ребра лежит строго ниже луча, а другой конец — выше или лежит на луче.

Алгоритм работает за время O для N-угольника.

Учёт числа оборотов

Кривая делает два оборота вокруг данной точки.

Рассмотрим число оборотов, которое делает ориентированная граница многоугольника вокруг данной точки P. В алгебраической топологии это число называется winding number. Оно может быть вычислено следующим образом. Как и раньше, выпустим луч из P в произвольном направлении и рассмотрим рёбра, которые он пересекает. Каждому пересечению присвоим число +1 или -1, в зависимости от того, как ребро пересекает луч — по часовой или против часовой стрелки. Эти два случая можно различить по знаку скалярного произведения между направляющим вектором ребра и нормалью к направляющему вектору луча. Сумма полученных величин и есть winding number. Сумма будет положительной или отрицательной, в зависимости от ориентации границы. Если она не равна нулю, то будем считать, что точка лежит внутри многоугольника, иначе — снаружи.

Такой алгоритм известен под названием nonzero winding rule.

Для простых многоугольников этот метод работает так же, как и метод, основанный на подсчёте числа пересечений. Разница между ними проявляется при рассмотрении многоугольников с самопересекающейся границей.



Просмотров: 2893


<<< Диаграмма Вороного
Линейное программирование >>>