Интернет магазин китайских планшетных компьютеров



Компьютеры - Троичная система счисления - Таблицы сложения в троичных системах счисления

22 января 2011


Оглавление:
1. Троичная система счисления
2. Таблицы сложения в троичных системах счисления
3. Девятеричная форма представления команд



В троичной несимметричной системе счисления

С результатом в десятичной системе счисления:

2 2 3 4
1 1 2 3
0 0 1 2
+ 0 1 2

С результатом в троичной несимметричной системе счисления:

2 02 10 11
1 01 02 10
0 00 01 02
+ 0 1 2

В троичной симметричной системе счисления

С результатом в десятичной системе счисления:

+1 0 +1 +2
0 −1 0 +1
−1 −2 −1 0
+ −1 0 +1

С результатом в троичной симметричной системе счисления:

+1 00 01 1i
0 0i 00 01
−1 i1 0i 00
+ −1 0 +1

Симметричная троичная система счисления

Позиционная целочисленная симметричная троичная система счисления была предложена итальянским математиком Фибоначчи для решения «задачи о гирях». Задачу о наилучшей системе гирь рассматривал Лука Пачоли. Частный случай этой задачи был опубликован в книге французского математика Клода Баше де Мезириака «Сборник занимательных задач» в XVII веке в 1612 г. Русский перевод книги К. Г. Баше «Игры и задачи, основанные на математике» вышел в Петербурге в 1877 г. Позже этой задачей занимался петербургский академик Леонард Эйлер, интересовался Д. И. Менделеев.

Симметричность при взвешивании на рычажных весах использовали с древнейших времён, добавляя гирю на чашу с товаром. Элементы троичной системы счисления были в системе счисления древних шумеров, в системах мер, весов и денег, в которых были единицы равные 3. Но только в симметричной троичной системе счисления Фибоначчи объединены оба этих свойства.

Симметричная система позволяет изображать отрицательные числа, не используя отдельный знак минуса. Число 2 изображается цифрой 1 в разряде троек и цифрой \bar 1 в разряде единиц. Число −2 изображается цифрой \bar 1 в разряде троек и цифрой 1 в разряде единиц.
Возможны шесть соответствий цифр троичной симметричной системы счисления и цифр троичной несимметричной системы счисления:

1. 2. 3. 4. 5. 6.
1 2 1 0 0 2 1
0 1 0 2 1 0 2
1 0 2 1 2 1 0

В соответствии 2. сохраняются числовые значения 0 и 1.

Десятичная система −3 −2 −1 0 1 2 3 4 5 6 7 8 9
Троичная несимметричная −10 −2 −1 0 1 2 10 11 12 20 21 22 100
Троичная симметричная 10 11 1 0 1 11 10 11 111 110 111 101 100

В троичной симметричной системе счисления знак 1 можно заменить знаком i или 2 и, во втором случае, использовать для троичной симметричной системы счисления {-1,0,+1} знаки троичной несимметричной системы {2,0,1}.

Свойства

Благодаря тому что основание 3 нечётно, в троичной системе возможно симметричное относительно нуля расположение цифр: −1, 0, 1, с которым связано пять ценных свойств:

  • Естественность представления отрицательных чисел;
  • Отсутствие проблемы округления.
  • Таблица умножения в этой системе, как отметил О. Л. Коши, примерно в четыре раза короче..
  • Для изменения знака у представляемого числа нужно изменять знаки у всех его цифр. Это свойство увеличивает число операций при перемене знака, но повышает надёжность при сбоях в одном или более разрядах.
  • При суммировании большого количества чисел значение для переноса в следующий разряд растёт с увеличением количества слагаемых не линейно, а пропорционально квадратному корню числа слагаемых.
  • По затратам числа знаков на представление чисел она равна троичной несимметричной системе.

Представление отрицательных чисел

Наличие положительной и отрицательной цифр позволяет непосредственно представлять как положительные, так и отрицательные числа. При этом нет необходимости в специальном разряде знака и не надо вводить дополнительный код для выполнения арифметических операций с отрицательными числами. Все действия над числами, представленными в троичной системе счисления с цифрами 0, 1, −1, выполняются естественно с учётом знаков чисел. Знак числа определяется знаком старшей значащей цифры числа: если она положительна, то и число положительно, если отрицательна, то и число отрицательно. Для изменения знака числа надо изменить знаки всех его цифр. Например:

10\bar1 = 9-1 = 8
\bar101 =-9+1 =-8

Округление

Другим полезным следствием симметричного расположения значений цифр является отсутствие проблемы округления чисел: абсолютная величина части числа, представленной отбрасываемыми младшими цифрами, никогда не превосходит половины абсолютной величины части числа, соответствующей младшей значащей цифре младшего из сохраняемых разрядов. Следовательно, в результате отбрасывания младших цифр числа получается наилучшее при данном количестве оставшихся цифр приближение этого числа, и округление не требуется.

Перевод чисел из десятичной системы в троичную

Перевод чисел из десятичной системы в троичную и соответствующий ему вопрос о гирях подробно изложены в книгах . Там же рассказано о применении троичной системы гирь в русской практике.

Перевод в другие системы счисления

Всякое число, записанное в троичной системе счисления с цифрами 0, 1, −1, можно представить в виде суммы целых степеней числа 3, причём если в данном разряде троичного изображения числа стоит цифра 1, то соответствующая этому разряду степень числа 3 входит в сумму со знаком «+», если же цифра −1, то со знаком «-», а если цифра 0, то вовсе не входит. Это можно представить формулой

 \cdots + K_3\cdot3^3 + K_2\cdot3^2+ K_1\cdot3^1+ K_0\cdot3^0+ K_{-1}\cdot3^{-1}+ K_{-2}\cdot3^{-2}+ K_{-3}\cdot3^{-3} + \cdots, где


 \cdots + K_3\cdot3^3 + K_2\cdot3^2+ K_1\cdot3^1+ K_0\cdot3^0 — целая часть числа,
 \cdots + K_{-1}\cdot3^{-1}+ K_{-2}\cdot3^{-2}+ K_{-3}\cdot3^{-3} + \cdots — дробная часть числа,

причём коэффициенты K могут принимать значения { 1, 0, −1 }.

Для того чтобы число, представленное в троичной системе, перевести в десятичную систему, надо цифру каждого разряда данного числа умножить на соответствующую этому разряду степень числа 3 и полученные произведения сложить.

Практические применения

  • Работая в палате мер и весов, Д. И. Менделеев, с учётом симметричной троичной системы счисления, разработал цифровой ряд значений весов разновеса для взвешивания на лабораторных весах, который используется по сей день.
  • Симметричная троичная система использовалась в советской ЭВМ Сетунь.


Просмотров: 24534


<<< Троичный компьютер
Троичные алгоритмы >>>