Интернет магазин китайских планшетных компьютеров



Компьютеры - TCP - Механизм действия протокола

14 июня 2011


Оглавление:
1. TCP
2. Заголовок сегмента TCP
3. Механизм действия протокола



В отличие от традиционной альтернативы — UDP, который может сразу же начать передачу пакетов, TCP устанавливает соединения, которые должны быть созданы перед передачей данных. TCP соединение можно разделить на 3 стадии:

  • Установка соединения
  • Передача данных
  • Завершение соединения

Состояния сеанса TCP

Упрощённая диаграмма состояний TCP. Более подробно в TCP EFSM diagram
Состояния сеанса TCP
CLOSED Начальное состояние узла. Фактически фиктивное
LISTEN Сервер ожидает запросов установления соединения от клиента
SYN-SENT Клиент отправил запрос серверу на установление соединения и ожидает ответа
SYN-RECEIVED Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения
ESTABLISHED Соединение установлено, идёт передача данных
FIN-WAIT-1 Одна из сторон завершает соединение, отправив сегмент с флагом FIN
CLOSE-WAIT Другая сторона переходит в это состояние, отправив, в свою очередь сегмент ACK и продолжает одностороннюю передачу
FIN-WAIT-2 Узел-1 получает ACK, продолжает чтение и ждёт получения сегмента с флагом FIN
LAST-ACK Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN
TIME-WAIT Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным закрытием соединения
CLOSING Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет ACK и находится в ожидании сегмента ACK

Установка соединения

Процесс начала сеанса TCP называется «тройным рукопожатием».

1. Клиент, который намеревается установить соединение, посылает серверу сегмент с номером последовательности и флагом SYN.

  • Сервер получает сегмент, запоминает номер последовательности и пытается создать сокет для обслуживания нового клиента.
    • В случае успеха сервер посылает клиенту сегмент с номером последовательности и флагами SYN и ACK, и переходит в состояние SYN-RECEIVED.
    • В случае неудачи сервер посылает клиенту сегмент с флагом RST.

2. Если клиент получает сегмент с флагом SYN, то он запоминает номер последовательности и посылает сегмент с флагом ACK.

  • Если он одновременно получает и флаг ACK, то он переходит в состояние ESTABLISHED.
  • Если клиент получает сегмент с флагом RST, то он прекращает попытки соединиться.
  • Если клиент не получает ответа в течение 10 секунд, то он повторяет процесс соединения заново.

3. Если сервер в состоянии SYN-RECEIVED получает сегмент с флагом ACK, то он переходит в состояние ESTABLISHED.

  • В противном случае после тайм-аута он закрывает сокет и переходит в состояние CLOSED.

Процесс называется «тройным рукопожатием», так как несмотря на то что возможен процесс установления соединения с использованием 4 сегментов, на практике для экономии времени используется 3 сегмента.

Пример базового 3-этапного согласования:

   TCP A                                                    TCP B
   1.  CLOSED                                               LISTEN
   2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               --> SYN-RECEIVED
   3.  ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED
   4.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK>       --> ESTABLISHED
   5.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

В строке 2 TCP A начинает передачу сегмента SYN, говорящего об использовании номеров последовательности, начиная со 100. В строке 3 TCP B передает SYN и подтверждение для принятого SYN в адрес TCP A. Надо отметить, что поле подтверждения показывает ожидание TCP B приема номера последовательности 101, подтверждающего SYN с номером 100.

В строке 4 TCP A отвечает пустым сегментом с подтверждением ACK для сегмента SYN от TCP B; в строке 5 TCP A передает некоторые данные. Отметим, что номер последовательности сегмента в строке 5 совпадает с номером в строке 4, поскольку ACK не занимает пространства номеров последовательности.

Передача данных

При обмене данными приемник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приемник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Все получаемые данные, относящиеся к промежутку подтвержденных последовательностей, игнорируются. Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируются, но номер подтвержденной последовательности не изменяется. Если впоследствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.

Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приемник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приемника передающей стороне в поле «окно» указывается текущий размер приемного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приемник. Если приемник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, до тех пор пока приемник не сообщит о большем размере окна.

В некоторых случаях передающее приложение может явно затребовать протолкнуть данные до некоторой последовательности принимающему приложению, не буферизируя их. Для этого используется флаг PSH. Если в полученном сегменте обнаруживается флаг PSH, то реализация TCP отдает все буферизированные на текущий момент данные принимающему приложению. «Проталкивание» используется, например, в интерактивных приложениях. В сетевых терминалах нет смысла ожидать ввода пользователя после того, как он закончил набирать команду. Поэтому последний сегмент, содержащий команду, обязан содержать флаг PSH, чтобы приложение на принимающей стороне смогло начать её выполнение.

Завершение соединения

Завершение соединения можно рассмотреть в три этапа:

  1. Посылка серверу от клиента флагов FIN и ACK на завершение соединения.
  2. Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто.
  3. После получения этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.

Известные проблемы

Максимальный размер сегмента

TCP требует явного указания максимального размера сегмента в случае, если виртуальное соединение осуществляется через сегмент сети, где максимальный размер блока менее, чем стандартный MTU Ethernet.

В протоколах туннелирования, таких как GRE, IPIP, а также PPPoE MTU туннеля меньше чем стандартный, поэтому сегмент TCP максимального размера имеет длину пакета больше, чем MTU. Поскольку фрагментация в подавляющем большинстве случаев запрещена, то такие пакеты отбрасываются.

Проявление этой проблемы выглядит как «зависание» соединений. При этом «зависание» может происходить в произвольные моменты времени, а именно тогда, когда отправитель использовал сегменты длиннее допустимого размера.

Для решения этой проблемы на маршрутизаторах применяются правила Firewall-а, добавляющие параметр MSS во все пакеты, инициирующие соединения, чтобы отправитель использовал сегменты допустимого размера.

MSS может также управляться параметрами операционной системы.

Обнаружение ошибок при передаче данных

Хотя протокол осуществляет проверку контрольной суммы по каждому сегменту, используемый алгоритм считается слабым. Так в 2008 году не обнаруженная сетевыми средствами ошибка в передаче одного бита, привела к остановке серверов системы Amazon Web Services.

В общем случае распределенным сетевым приложениям рекомендуется использовать дополнительные программные средства для гарантирования целостности передаваемой информации.

Атаки на протокол

Недостатки протокола проявляются в успешных теоретических и практических атаках, при которых злоумышленник может получить доступ к передаваемым данным, выдать себя за другую сторону или привести систему в нерабочее состояние.



Просмотров: 6873


<<< Архиватор