Интернет магазин китайских планшетных компьютеров



Компьютеры - Потенциалоскоп - Потенциалоскоп, преобразующий электрический сигнал в видимое изображение

23 января 2011


Оглавление:
1. Потенциалоскоп
2. Способы записи и считывания
3. Потенциалоскоп, преобразующий электрический сигнал в видимое изображение
4. Список используемой литературы



Потенциалоскоп, выходным сигналом которого является только видимое изображение, получающееся на люминесцирующем экране. В качестве примера такой трубки можно привести потенциалоскоп с фотоэлектронным возбуждением люминофора. В цилиндрической колбе установлена мишень.

Дно колбы, противоположное мишени, покрыто слоем люминофора. Горловина колбы расположены под углом 25—300° к оси колбы. Внутренняя поверхность цилиндрической части колбы и горловины имеет проводящее покрытие, выполняющее функции коллектора. Один коллектор, помещённый в горловине трубки, осуществляет и запись и стирание. В этом потенциалоскопе используются неравновесная запись и считывание сеточным управлением.

Прожектор потенциалоскопа используется только при записи.

Мишень представляет собой слой диэлектрика, нанесённый на сигнальную пластинку. На поверхности диэлектрика расположены фоточувствительные частицы, электрически связанные между собой. Не закрытая фотокатодами поверхность диэлектрика является потенциалоносителем. При записи ускоряющее напряжение повышается до значения, превышающего второй критический потенциал, и к модулятору прожектора подводится записываемый сигнал. Так как при этом потенциал мишени понижается, на поверхности мишени создается отрицательный потенциальный рельеф, глубина которого примерно пропорциональна току записывающего пучка. Таким образом, трубка позволяет записывать полутона. Записанный сигнал при отсутствии считывания и стирания в случае кварцевого потенциалоносителя и вакуума не хуже 10-7 мм рт. ст. может сохраняться длительное время — до 30 дней.

Считывание происходит при освещении элементарных фотокатодов внешним источником света. При этом потенциал сигнальной пластинки устанавливается отрицательным относительно коллектора. Электроны, испускаемые фотокатодами при освещении, ускоряются полем коллектора и фокусируются однородным продольным магнитным полем, создаваемым длинной катушкой, надетой на цилиндрическую часть колбы. Потенциальный рельеф действует подобно управляющей сетке электронной лампы: электроны с фотокатодов, расположенных вблизи отрицательно заряженных элементов мишени, тормозятся и не доходят до люминесцирующего экрана или доходят в меньшем количестве. Так как однородное магнитное поле «переносит» электронное изображение с мишени на экран, записанный сигнал воспроизводится на экране в виде изображения.

Очевидно, полярность выходного сигнала обратно полярности записываемого сигнала, то есть максимальной амплитуде входного сигнала соответствуют тёмные места изображения. Трубка допускает передачу градаций «серого», так как при неравновесной записи глубина потенциального рельефа может иметь любые значения в пределах между двумя равновесными потенциалами, яркость свечения экрана также может меняться в широких пределах в зависимости от тока фотоэлектронов. Считывание может продолжаться в течение 10—15 мин, затем изображение начинает заметно ухудшаться, главным образом вследствие сглаживания потенциального рельефа положительными ионами, легко образующимися при больших скоростях электронов.

Разновидностью трубок, преобразующих электрический сигнал в видимое изображение, являются потенциалоскопы со знаковой индикацией. В этих трубках используются равновесная запись и считывание сеточным управлением. Особенностью их является наличие на пути записывающего электронного пучка металлической пластинки — матрицы, придающей пучку поперечное сечение в форме определенного знака. При падении такого «промоделированного» матрицей электронного пучка на мишени, выполненной в виде сетки, покрытой слоем диэлектрика, создается потенциальный рельеф, воспроизводящий записываемый знак. При считывании луч считывающего прожектора проходит сквозь сетку-мишень лишь в тех местах, где был записан сигнал, и, попадая на экран, воспроизводит записанный знак.

Примером такой трубки служит тайпотрон. В горловине трубки помещается электронный прожектор, пластины выбора знака, направляющие луч на соответствующее место матрицы, а также компенсирующие и адресные пластины. Компенсирующие пластины необходимы для направления электронного пучка, прошедшего матрицу, вдоль оси трубки. Адресные пластины направляют луч в необходимую область мишени. В области за матрицей до компенсирующих пластин пучок фокусируется магнитной катушкой надетой на горловину трубки.

В широкой части колбы установлена мишень в виде мелкоструктурной сетки, покрытой со стороны прожектора слоем диэлектрика. Дно колбы покрыто слоем люминофора. Горловина, переходная область и широкая часть колбы имеют отдельные проводящие покрытия с различными потенциалами. На одной из адресных пластин укреплён считывающий прожектор, создающий широкий не сфокусированный поток электронов, облучающих всю мишень.

При записи пучок из прожектора, оформленный матрицей в виде знака, направляется адресными пластинами на выбранное место мишени. При считывании медленные электроны считывающего пучка не проходят сквозь сетку-мишень в тех местах, где не было записи информации. В тех же местах, где написаны знаки, за счет более высокого потенциала мишени электроны считывающего пучка попадают в ускоряющее поле и проходят сквозь мишень. После ускорения в пространстве мишень — экран электроны, прошедшие сквозь мишень, бомбардируют экран, вызывая свечение. Примерная картина, наблюдаемая на экране тайпотрона, показана на рис. 4. Конструкция тайпотрона сложна, и поэтому он пока не получил широкого распространения.



Просмотров: 3805


<<< Перфолента (носитель информации)
Расширенная память >>>