Интернет магазин китайских планшетных компьютеров



Компьютеры - Линейный криптоанализ

23 января 2011


Оглавление:
1. Линейный криптоанализ
2. Применение
3. Защита от линейного криптоанализа



В криптографии линейным криптоанализом называется метод криптоаналитического вскрытия, использующий линейные приближения для описания работы шифра.

Линейный криптоанализ был изобретён японским криптологом Мицуру Мацуи. Предложенный им в 1993 г. алгоритм был изначально направлен на вскрытие DES и FEAL. Впоследствии линейный криптоанализ был распространён и на другие алгоритмы. На сегодняшний день наряду с дифференциальным криптоанализом является одним из наиболее распространённых методов вскрытия блочных шифров. Разработаны атаки на блочные и потоковые шифры.

Открытие линейного криптоанализа послужило толчком к построению новых криптографических схем.

Принцип работы

Криптоанализ происходит в два шага. Первый — построение соотношений между открытым текстом, шифротекстом и ключом, которые справедливы с высокой вероятностью. Второй — использование этих соотношений вместе с известными парами открытый текст — шифротекст для получения битов ключа.

Построение линейных уравнений

Смысл алгоритма состоит в получении соотношений следующего вида:


  P_{i_1} \oplus P_{i_2} \oplus ... \oplus P_{i_a} \oplus C_{j_1} \oplus C_{j_2} \oplus ... \oplus C_{j_b} = K_{k_1} \oplus K_{k_2} \oplus ... \oplus K_{k_c},

где n-ые биты текста, шифротекста и ключа.

Данные соотношения называются линейными аппроксимациями. Для произвольно выбранных бит открытого текста, шифротекста и ключа вероятность справедливости такого соотношения P примерно равна 1/2. Такими соотношениями, вероятность которых заметно отличается от 1/2 можно пользоваться для вскрытия алгоритма.

Как и в дифференциальном криптоанализе, сначала криптоаналитик находит некое однораундовое соотношение, затем пытается распространить его на весь алгоритм. В отличие от дифференциального криптоанализа существуют алгоритмы поиска полезных соотношений. Два алгоритма были описаны Мицуру Мацуи, другие появились позже.

В блочных шифрах анализ преимущественно концентрируется на S-боксах, так как они являются нелинейной частью шифра. Наиболее эффективное однораундовое соотношение для алгоритма DES использует свойство таблицы S5. Второй входной бит таблицы равен результату операции XOR над всеми выходными битами с вероятностью 3/16. А для полнораундового DES известно соотношение, выполняющееся с вероятностью 1/2 + 2.

Линейный криптоанализ имеет одно очень полезное свойство — при определённых условиях можно свести соотношение к уравнению вида:


  C_{j_1} \oplus C_{j_2} \oplus ... \oplus C_{j_b} = K_{k_1} \oplus K_{k_2} \oplus ... \oplus K_{k_c}.

Здесь отсутствуют биты открытого текста, то есть можно построить атаку на основе только шифротекста. Такая атака является наиболее практичной.

Piling-up lemma

Хотя аппроксимацию с наибольшим отклонением от 1/2 найти не сложно, возникает ряд проблем при экстраполировании метода на полнораундовый шифр. Первая затрагивает вычисление вероятности линейной аппроксимации. В принципе, это потребовало бы от криптоаналитика просмотреть все возможные комбинации открытых текстов и ключей, что невыполнимо. Решение этой проблемы — сделать ряд предположений и приблизить вероятность, используя лемму о набегании знаков. При использовании этой леммы линейная аппроксимация представляется в виде цепочки аппроксимаций, причём каждая из них охватывает лишь небольшую часть шифра. Такая цепочка называется линейной характеристикой. Вероятность нахождения комбинации:


  P = \frac{1}{2} + 2^{n-1}\prod_{i=1}^{n}.

Получение битов ключа

Как только получена линейная аппроксимация, можно применить прямой алгоритм и, используя пары открытый текст-шифротекст предположить значения битов ключа. При этом логично использовать максимально эффективное соотношение, то есть такое, для которого отклонение вероятности P от 1/2 максимально.

Для каждого набора значений битов ключа в правой части уравнения вычисляется количество пар открытый текст-шифротекст T, для которых справедливо равенство . Тот кандидат, для которого отклонение T от половины количества пар открытый текст-шифротекст — наибольшее по абсолютному значению, полагается наиболее вероятным набором значений битов ключа.



Просмотров: 2407


<<< Криптоаналитический компьютер
Метод встречи в середине атаки >>>