Интернет магазин китайских планшетных компьютеров



Компьютеры - Алгоритм фрактального сжатия

22 января 2011


Оглавление:
1. Алгоритм фрактального сжатия
2. Основная сложность метода
3. Патенты



Треугольник Серпинского — изображение, задаваемое тремя аффинными преобразованиями

это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия для реальных фотографий природных объектов, что недоступно для других алгоритмов сжатия изображений в принципе. Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Суть фрактального сжатия

Основа метода фрактального кодирования — это обнаружение самоподобных участков в изображении. Впервые возможность применения теории систем итерируемых функций к проблеме сжатия изображения была исследована Майклом Барнсли и Аланом Слоуном. Они запатентовали свою идею в 1990 и 1991 гг). А. Жакен представил метод фрактального кодирования, в котором используются системы доменных и ранговых блоков изображения, блоков квадратной формы, покрывающих все изображение. Этот подход стал основой для большинства методов фрактального кодирования, применяемых сегодня. Он был усовершенствован Ювалом Фишером и рядом других исследователей.

В соответствии с данным методом изображение разбивается на множество неперекрывающихся ранговых подизображений и определяется множество перекрывающихся доменных подизображений. Для каждого рангового блока алгоритм кодирования находит наиболее подходящий доменный блок и аффинное преобразование, которое переводит этот доменный блок в данный ранговый блок. Структура изображения отображается в систему ранговых блоков, доменных блоков и преобразований.

Идея заключается в следующем: предположим что исходное изображение является неподвижной точкой некоего сжимающего отображения. Тогда можно вместо самого изображения запомнить каким-либо образом это отображение, а для восстановления достаточно многократно применить это отображение к любому стартовому изображению.

По теореме Банаха, такие итерации всегда приводят к неподвижной точке, то есть к исходному изображению. На практике вся трудность заключается в отыскании по изображению наиболее подходящего сжимающего отображения и в компактном его хранении. Как правило, алгоритмы поиска отображения в значительной степени переборные и требуют больших вычислительных затрат. В то же время, алгоритмы восстановления достаточно эффективны и быстры.

Вкратце метод, предложенный Барнсли, можно описать следующим образом. Изображение кодируется несколькими простыми преобразованиями, то есть определяется коэффициентами этих преобразований.

Например, изображение кривой Коха можно закодировать четырьмя аффинными преобразованиями, мы однозначно определим его с помощью всего 24-х коэффициентов.

Далее, поставив чёрную точку в любой точке картинки мы будем применять наши преобразования в случайном порядке некоторое число раз.

В результате точка обязательно перейдёт куда-то внутрь чёрной области на исходном изображении. Проделав такую операцию много раз мы заполним все чёрное пространство, тем самым восстановив картинку.



Просмотров: 2079


<<< Компандирование